A Genetic Optimization Algorithm Based on Adaptive Dimensionality Reduction
نویسندگان
چکیده
منابع مشابه
STRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملLow-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters
This paper presents a low-complexity robust data-dependent dimensionality reduction based on a modified joint iterative optimization (MJIO) algorithm for reduced-rank beamforming and steering vector estimation. The proposed robust optimization procedure jointly adjusts the parameters of a rank-reduction matrix and an adaptive beamformer. The optimized rank-reduction matrix projects the received...
متن کاملAdaptive Metric Dimensionality Reduction
We study data-adaptive dimensionality reduction in the context of supervised learning in general metric spaces. Our main statistical contribution is a generalization bound for Lipschitz functions in metric spaces that are doubling, or nearly doubling, which yields a new theoretical explanation for empirically reported improvements gained by preprocessing Euclidean data by PCA (Principal Compone...
متن کاملAdaptive sampling for nonlinear dimensionality reduction based on manifold learning
We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity NavierStokes flow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2020
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2020/8598543